Ароматические соединения. Ароматические углеводороды (арены): классификация, номенклатура и изомерия, физические свойства Что это такое

АРОМАТИЧНОСТЬ – сочетание определенных свойств, присущих большой группе соединений, называемых, соответственно, ароматическими.

Термин «ароматичность» ввел в 1865 Ф.Кекуле , установивший строение бензола и предложивший для него формулу:

Название «ароматический» связано с тем, что среди производных бензола существуют соединения с приятным запахом (например, нитробензол имеет запах миндаля).

Кекуле обратил внимание на то, что двойные связи в бензоле и в его производных заметно отличаются по свойствам от двойных связей в большинстве ненасыщенных соединений. Для бензола оказались крайне затруднены реакции присоединения (например, галогенов) по двойным связям, которые в случае ненасыщенных соединений проходят достаточно легко.

Кроме того, обнаружилось, что орто -дихлорбензол (атомы хлора находятся у двух соседних атомов углерода) не имеет изомеров, которые можно было ожидать на основе предложенной для него структурной формулы, где два атома хлора расположены либо у простой, либо у двойной связи:

В результате Кекуле предложил назвать связи в бензоле осциллирующими, то есть колеблющимися. Со временем это предположение получило дальнейшее развитие, и было усовершенствовано.

Наиболее характерны для бензола реакции замещения атомов водорода. Изучение химии бензола показало, что замена атома водорода на какую-либо группу определенным и, главное, предсказуемым образом влияет на реакционную способность остальных атомов водорода.

Если в бензольное ядро ввести группу, оттягивающую электроны от ядра (например, метильную), то последующее галогенирование приводит к замещению в орто- и пара- положении. При введении электроноподающей группы (например, карбоксильной) галоген направляется в мета -положение:

Долгое время ароматичностью считали набор указанных химических свойств, но постепенно были найдены более точные признаки, основанные на особенностях строения ароматических соединений.

Электронное строение бензола и родственных ему соединений в современном понимании выглядит следующим образом. В образовании двойных связей участвуют р -электроны атомов углерода, орбитали (область наиболее вероятного расположения электрона в пространстве) этих электронов имеют форму объемных восьмерок. В случае бензола орбитали взаимоперекрываются, образуя кольцевые орбитали, на которых располагаются все р -электроны молекулы:

В результате появляется единая замкнутая электронная оболочка, система приобретает высокую стабильность. Фиксированные простые и двойные связи в бензоле отсутствуют, все связи С–С усреднены и эквивалентны, поэтому чаще для обозначения ароматичности используют кольцевой символ, помещенный внутри цикла:

В образовавшихся циклических орбиталях возникает кольцевой ток, который может быть обнаружен специальными измерениями, дополнительно указывающими на ароматичность соединения.

Ароматичностью обладают плоские циклические молекулы, при этом количество электронов (m ), объединенных в единую циклическую систему, должно соответствовать правилу Хюккеля:

m = 4n + 2 (n = 0, 1, 2, 3...), n – число натурального ряда

Ниже показаны первые три представителя этого ряда ароматических молекул, соответствующие правилу Хюккеля: катион циклопропена , бензол и нафталин.

Расширение понятия «ароматичность» позволило применить этот термин к соединениям небензольного типа, но обладающим в то же время набором структурных и химических признаков, характерных для производных бензола.

В некоторых соединениях, где в состав цикла входят атомы O, S или N, например, в фуране, тиофене, пирроле так же, как в бензоле, существует устойчивая – в соответствии с правилом Хюккеля – шестиэлектронная замкнутая система. Четыре р- электрона (отмечены на рисунке синим цветом) предоставляют двойные связи цикла, а два s- электрона (отмечены красным цветом) дают атомы кислорода, серы или азота, имеющие неподеленную пару электронов.

Михаил Левицкий

Химия — очень увлекательная наука. Она изучает все вещества, которые существуют в природе, а их огромное множество. Они разделяются на неорганические и органические. В этой статье мы рассмотрим ароматические углеводороды, которые относятся к последней группе.

Что это такое?

Это органические вещества, которые имеют в своем составе одно или несколько бензольных ядер — устойчивых структур из шести атомов углерода, соединенных в многоугольник. Данные химические соединения обладают специфическим запахом, что можно понять из их названия. Углеводороды этой группы относятся к циклическим, в отличие от алканов, алкинов и др.

Ароматические углеводороды. Бензол

Это самое простое химическое соедиение из данной группы веществ. В состав его молекул входят шесть атомов углерода и столько же гидрогена. Все остальные ароматические углеводороды являются производными бензола и могут быть получены с его использованием. Это вещество при нормальных условиях находится в жидком состоянии, оно бесцветное, обладает специфическим сладковатым запахом, в воде не растворяется. Закипать оно начинает при температуре +80 градусов по Цельсию, а замерзать — при +5.

Химические свойства бензола и других ароматических углеводородов

Первое, на что нужно обратить внимание, — галогенирование и нитрование.

Реакции замещения

Первая из них — галогенирование. В этом случае, чтобы химическое взаимодействие могло осуществиться, нужно использовать катализатор, а именно трихлорид железа. Таким образом, если добавить к бензолу (С 6 Н 6) хлор (Cl 2), то мы получим хлорбензол (С 6 Н 5 Cl) и хлороводород (HCl), который выделится в виде прозрачного газа с резким запахом. То есть вследствие этой реакции один атом водорода замещается атомом хлора. То же самое может произойти и при добавлении к бензолу других галогенов (йода, брома и т. д.). Вторая реакция замещения — нитрование — проходит по похожему принципу. Здесь в роли катализатора выступает концентрированный раствор серной кислоты. Для проведения такого рода химической реакции к бензолу необходимо добавить нитратную кислоту (HNO 3), тоже концентрированную, в результате чего образуются нитробензол (C 6 H 5 NO 2) и вода. В этом случае атом гидрогена замещается группой из атома нитрогена и двух оксигена.

Реакции присоединения

Это второй тип химических взаимодействий, в которые способны вступать ароматические углеводороды. Они также существуют двух видов: галогенирование и гидрирование. Первая происходит только при наличии солнечной энергии, которая выступает в роли катализатора. Для проведения этой реакции к бензолу также необходимо добавить хлор, но в большем количестве, чем для замещения. На одну молекулу бензола должно приходиться три хлора. В результате получим гексахлорциклогексан (С 6 Н 6 Cl 6), то есть к имеющимся атомам присоединится еще и шесть хлора.

Гидрирование происходит только в присутствии никеля. Для этого необходимо смешать бензол и гидроген (Н 2). Пропорции те же, что и в предыдущей реакции. Вследствие этого образуется циклогексан (С 6 Н 12). Все остальные ароматические углеводороды также могут вступать в такого типа реакции. Они происходят по такому же принципу, как и в случае с бензолом, только с образованием уже более сложных веществ.

Получение химических веществ этой группы

Начнем все так же с бензола. Его можно получить с помощью такого реагента, как ацетилен (С 2 Н 2). Из трех молекул данного вещества под воздействием высокой температуры и катализатора образуется одна молекула нужного химического соединения.

Также бензол и некоторые другие ароматические углеводороды можно добыть из каменноугольной смолы, которая образуется во время производства металлургического кокса. К получаемым таким способом можно отнести толуол, о-ксилол, м-ксилол, фенантрен, нафталин, антрацен, флуорен, хризен, дифенил и другие. Кроме того, вещества этой группы часто добывают из продуктов переработки нефти.

Как выглядят разнообразные химические соединения этого класса?

Стирол представляет собой бесцветную жидкость с приятным запахом, малорастворимую в воде, температура кипения составляет +145 градусов по Цельсию. Нафталин — кристаллическое вещество, также мало растворяется в воде, плавится при температуре +80 градусов, а закипает при +217. Антрацен в нормальных условиях также представлен в виде кристаллов, однако уже не бесцветных, а имеющих желтую окраску. Это вещество не растворяется ни в воде, ни в органических растворителях. Температура плавления — +216 градусов по шкале Цельсия, кипения — +342. Фенантрен выглядит как блестящие кристалы, которые растворяются только в органических растворителях. Температура плавления — +101 градус, кипения — +340 градусов. Флуорен, как понятно из названия, способен к флуоресценции. Это, как и многие другие вещества данной группы, — бесцветные кристаллы, нерастворимые в воде. Температура плавления — +116, закипания — +294.

Применение ароматических углеводородов

Бензол используется при производстве красителей в качестве сырья. Также он применяется при получении взрывчатки, пестицидов, некоторых лекарств. Стирол используют в производстве полистирола (пенопласта) с помощью полимеризации исходного вещества. Последний широко применяют в строительстве: в качестве тепло- и звукоизолирующего, электроизоляционного материала. Нафталин, как и бензол, участвует в производстве пестицидов, красителей, лекарств. Кроме того, он используется в химической промышленности для получения многих органических соединений. Антрацен также применяют в изготовлении красителей. Флуорен играет роль стабилизатора полимеров. Фенантрен, как и предыдущее вещество и многие другие ароматические углеводороды, — один из компонентов красителей. Толуол широко применяют в химической промышленности для добывания органических веществ, а также для получения взрывчатки.

Характеристика и использование веществ, добываемых с помощью ароматических углеводородов

К таким в первую очередь можно отнести продукты рассмотренных химических реакций бензола. Хлорбензол, к примеру, является органическим растворителем, также используется в производстве фенола, пестицидов, органических веществ. Нитробензол является компонентом полировальных средств для металла, применяется при изготовлении некоторых краситлей и ароматизаторов, может играть роль растворителя и окислителя. Гексахлорциклогексан используется в качестве яда для борьбы с насекомыми-вредителями, а также в химической промышленности. Циклогексан применяют в производстве лакокрасочных изделий, при получении многих органических соединений, в фарамацевтической отрасли промышленности.

Заключение

Прочитав эту статью, можно сделать вывод, что все ароматические углеводороды имеют однотипную химическую структуру, что позволяет объединить их в один класс соединений. Кроме того, их физические и химические свойства также весьма похожи. Внешний вид, температуры кипения и плавления всех химических веществ данной группы не сильно отличаются. Свое применение многие ароматические углеводороды находят в одних и тех же отраслях промышленности. Вещества, которые можно получить вследствие реакций галогенирования, нитрования, гидрирования, также имеют схожие свойства и используются в похожих целях.

Ароматические углеводороды - это циклические, сопряженные соединения, которые благодаря своему строению проявляют особые физико-химические свойства. Позже к понятию "ароматические углеводороды" было отнесено их специфические физико-химические свойства:

  1. Склонность преимущественно к реакциям замещения;
  2. Устойчивость к воздействию окислителей и высоких температур.

Простейшим представителем аренов является бензол и его гомологи, конденсированные бензоидные, небензоидные и гетероциклические соединения.

Ароматичность представляется особой стабилизацией делокализованных циклических $\pi$-систем, содержащих ($4n + 2$) $\pi$-электронов. Этой «особой стабилизации» не наблюдается в случае ($4n$) $\pi$ циклических систем. Для малых циклов такая система будет дестабилизированной, т.е. такие системы будут «антиароматическими». Однако утверждение об особой стабилизации требует не только теоретических выкладок, но и определенных экспериментальных подтверждений. В связи с этим вопрос о выборе надежных экспериментальных критериев ароматичности приобретает принципиальную важность.

Признаки ароматичности

Ароматический характер углеводородов обусловлен как легкостью образования ароматических циклов, так и особенностью их физических и химических свойств.

Характерные свойства ароматических соединений (аренов) определяются своеобразностью их строения и обусловливают химический критерий ароматичности:

Физико-химические критерии ароматичности

Основным критерием ароматичности является соответствии молекулы основным требованиям:

  1. Молекула должна быть циклической и плоской;
  2. Молекула должна иметь замкнутую цепь сопряжения $\pi$-электронов;
  3. Количество $\pi$-электронов ($N$) в цепи сопряжение должно соответствовать правилу Хюккеля: $N = 4n + 2$, где $n = 0,1,2,3$ ...

Поэтому энергия сопряжение является главным критерием ароматичности.

Если соединение соответствует всем критериям ароматичности, то энергия сопряжение в молекулах достигает максимального значения, а сама соединение в результате этого становится чрезвычайно стабильной. Поэтому энергия сопряжение является главным критерием ароматичности.

Согласно определению IUРАС, ароматичность можно охарактеризовать как «понятие пространственной и электронной структуры циклических молекулярных систем, отражает эффекты циклической делокализации электронов, которые обеспечивают повышенную термодинамическую стабильность этих систем (по сравнению с ациклическими структурными аналогами) и тенденцию к сохранению структурного типа в ходе химических преобразований... ». Говоря о стабилизации циклических структур по сравнению с «ациклическими аналогами» ароматичность появляется как энергетически топологическое понятие, которое можно примерно оценить по физико-химическим наблюдениями. «Ациклические аналоги» на самом деле могут быть даже несуществующими химическими соединениями, а «плодом воображения с топологическими пределами».

Критерии оценки ароматичности

Критерии оценки ароматичности могут быть разделены на две категории в зависимости от контекста наблюдения - статические (изолированные молекулы) и динамические (молекула подвергается воздействию внешнего магнитного поля). Энергетические критерии (энтальпия реакций) и структурные (изменение длин связей) обуславливают принципиально различные магнитные критерии (ЯМР, изменения магнитной чувствительности) (Таблица 1).

Рисунок 4. Классификация критериев ароматичности

Структурная и энергетическая ароматичность

«Структурную» ароматичность можно оценить по средним длинами связей и отклонениями от этого среднего значения.

«Энергетическая» ароматичность может быть оценена через энтальпии реакций с раскрытием цикла. Резонансные энергии ($RE$), такие как резонансная энергия Бреслоу ($BRE$), рассчитываются по методу Хюккеля, в то время как для расчета энергий ароматической стабилизации ($ASE$) используют неэмпирические методы (ah initio).

Магнитная ароматичность

«Магнитная» ароматичность, обычно определяется количественно с помощью ЯМР, дезекрануванням ядер и независимого химического сдвига центра цикла (NICS «Nucleus Independent Chemical Schift»), как было предложено Шлейером в 1996г.

Ароматичность - понятие, характеризующее совокупность особых структурных, энергетических и магнитных свойств, а также особенностей реакционной способности циклических структур с системой сопряженных связей.

Хотя ароматичность - одна из важнейших и наиболее плодотворных концепций химии (не только органической), - не существует общепринятого краткого определения этого понятия. Ароматичность понимается через совокупность особых признаков (критериев), присущих ряду циклических сопряженных молекул в той или иной мере. Часть этих критериев имеет экспериментальную, наблюдаемую природу, но другая часть основывается на квантовой теории строения молекул. Ароматичность имеет квантовую природу. Невозможно объяснить ароматичность с позиций классической структурной теории и теории резонанса.
Не следует путать ароматичность с делокализацией и сопряжением. В молекулах полиенов (1,3-бутадиена, 1,3,5-гексатриена и т.п.) проявляется явно выраженная тенденция к делокализации электронов и образованию единой сопряженной электронной структуры, что проявляется в спектрах (в первую очередь, электронных спектрах поглощения), некотором изменении длин и порядков связей, энергетической стабилизации, особых химических свойствах (электрофильное 1,4-присоединение в случае диенов и пр.). Делокализация и сопряжение - необходимые, но не достаточные условия ароматичности. Можно дать определение ароматичности как свойства, при котором сопряженное кольцо ненасыщенных связей проявляет бόльшую стабильность, чем ту, которую можно было бы ожидать только при одном сопряжении. Однако этим определением нельзя пользоваться, не имея экспериментальных или расчётных данных по стабильности циклической сопряжённой молекулы.
Для того чтобы молекула могла быть ароматической, она должна содержать хотя бы один цикл, каждый из атомов которого располагает пригодной для образования ароматической системы р-орбиталью. Ароматическим в полном смысле этого слова считается (в случае выполнения критериев, перечисленных ниже) именно этот цикл (кольцо, система колец).
В этом цикле должно быть 4n+2 (то есть 2, 6, 10, 14, 18, 22 и т.п.) p-электронов .
Это правило называется правилом или критерием ароматичности Хюккеля . Источник этого правила - сильно упрощенные квантовохимические расчеты идеализированных циклических полиенов, произведенные на заре развития квантовой химии. Дальнейшие исследования показали, что в основе своей это простое правило дает верные предсказания ароматичности даже и для очень сложных реальных систем.
Правилом, тем не менее, нужно правильно пользоваться, иначе прогноз может быть неверен.

Какие орбитали считаются пригодными для образования ароматической системы? - Любые орбитали, перпендикулярные плоскости цикла, и
а) принадлежащие входящим в цикл кратным (эндоциклическим двойным или тройным) связям;
б) соответствующие неподеленным парам электронов у гетероатомов (азота, кислорода, и т.п.) или карбанионов;
в) соответствующие шестиэлектронным (секстетным) центрам, в частности карбокатионам.

Критерии ароматичности.

Энергетический (повышение термодинамической устойчивости за счет делокализации электронов, так называемая энергия делокализации - ЭД).

Можно представить бензол производным трёх молекул этилена и сравнить энергии исходных фрагментов и конечной молекулы. У каждой молекулы этилена по 2 p-электрона (всего 6) на молекулярных орбиталях (МО) одинаковой энергии (α+β), а у бензола 6 электронов располагаются на трёх связывающих молекулярных орбиталях, давая в сумме более отрицательное значение энергии системы (α и β меньше 0).

Очевидное энергетическое преимущество составляет 2β = 36 ккал/моль или 1,56 эВ - это ЭЭР (эмпирическая энергия резонанса).
Энергетический критерий из всех самый неудобный и неясный. Величины энергий для этого критерия берут всегда расчетные, потому что, как правило, невозможно подобрать соответствующую неароматическую молекулу для сравнения. Следует, поэтому, спокойно относиться к тому, что существует множество различных оценок энергии делокализации даже для классических ароматических молекул, а для более сложных систем эти величины вообще отсутствуют. Никогда нельзя сравнивать разные ароматические системы по величине энергий делокализации - нельзя сделать вывод, что молекула А ароматичнее молекулы В, потому что энергия делокализации больше.
Структурный - очень важный, если не самый важный, критерий, так как имеет не теоретическую, а экспериментальную природу. Специфика геометрии молекул ароматических соединений заключается в тенденции к копланарному расположению атомов и выравниванию длин связей. У бензола выравнивание длин связей идеально - все шесть С-С связей одинаковы по длине. У более сложных молекул выравнивание не идеально, но значительно. В качестве критерия берут меру относительного отклонения длин сопряженных связей от среднего значения. Чем ближе к нулю, тем лучше. Эту величину можно проанализировать всегда, если имеется структурная информация (экспериментальная или из высококачественного квантовохимического расчета). Тенденция к копланарности обуславливается выгодностью параллельного расположения осей атомных р-орбиталей для их эффективного перекрывания.
Магнитный (наличие кольцевого тока - диатропная система, влияние на химические сдвиги протонов снаружи и внутри кольца, примеры - бензол и -аннулен). Самый удобный и доступный критерий, так как для его оценки достаточно спектра 1H ЯМР. Для точного определения используют теоретические расчеты химических сдвигов.
Химический - склонность к реакциям замещения, а не присоединения. Самый наглядный критерий, ясно различающий химию ароматических соединений от химии полиенов. Но работает он далеко не всегда. В ионных системах (например, в циклопентадиенил-анионе или тропилий-катионе) замещение наблюдать невозможно. Реакции замещения иногда проходят и на неароматических системах, а ароматические всегда в какой-то степени способны к реакциям присоединения. Поэтому химический критерий более правильно назвать признаком ароматичности.

АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ , обширный класс органических соединений, характерной чертой которых являются: 1) циклическое строение и 2) особая система распределения сил сродства внутри молекулы, сообщающая циклу большую прочность. Простейшим веществом этого чрезвычайно богатого соединениями класса органической химии является бензол, основной углеродный скелет которого схематически изображается в виде шестиугольника - «ядра». К ароматическим соединениям относят не только производные бензола и его гомологов, но также и конденсированные системы типа нафталина, фенантрена, хризена и т. д., составленные из двух, трех, четырех и т. д. ядер бензола, равно как и многие гетероциклические соединения, обладающие ароматическим характером, т. е. комплексом определенных специфических свойств. Свойства, отличающие ароматические соединения от жирных и алициклических:

1) Атомы водорода обладают большой подвижностью, что проявляется в способности ароматических соединений входить в различного рода реакции замещения. Особенно характерными являются химические превращения, протекающие при действии азотной и серной кислот. При этом происходит нитрование или сульфирование ароматических соединений, т. е. процессы, связанные с обменом атома (или атомов) водорода на нитро-группу NО 2 или сульфо-группу SО 3 H:

Обе эти реакции широко используются в технологии органических веществ.

2) Различные реакционные группы в ароматических соединениях по некоторым своим свойствам значительно отличаются от свойств этих же групп в соединениях жирного ряда: галоиды в галоидных производных бензола обладают меньшей реакциеспособностью по сравнению с галоидными алкилами; для обмена галоида в галоидных арилах (арил - ароматический углеводородный остаток) на другие группы (гидроксил, амино-группу и т. д.) приходится прибегать к более сильным химическим воздействиям, чем в соответствующих алифатических соединениях; щелочные свойства ароматических аминов значительно слабее аминов жирных. Этот «кислый» или «отрицательный» характер ароматического остатка находит свое отражение также в ряде других свойств ароматических соединений. Особенно резко отличаются ароматические амины своим отношением к азотистой кислоте; с ней они дают т. н. диазосоединения, аналоги которых в жирном ряду известны только в исключительных случаях. Изменение свойств гидроксила в ароматических соединениях выражается в повышении его кислотности; поэтому гидроксильные производные бензола – фенолы - обладают свойствами настоящих кислот. Они реагируют с водными растворами едких щелочей, образуя солеобразные соединения - феноляты. Дигидроксильные производные бензола, нафталина и т. д. обладают свойством при окислении, отнятием двух атомов Н, превращаться в своеобразные соединения - хиноны.

3) Главное отличие ароматических соединений от алифатических, и в особенности от сходных с ними по строению углеродного скелета алициклических соединений, заключается в особом состоянии насыщенности ароматического цикла. Эта насыщенность сообщает ароматическим соединениям чрезвычайную прочность и стойкость по отношению к различным химическим воздействиям. Эмпирические формулы ароматических углеводородов (С 6 Н 6 , С 7 Н 8 , С 10 Н 8 , С 14 Н 8 и т. д.) показывают, что эти соединения д. б. отнесены к классу ненасыщенных, характеризующихся реакциями присоединения и окисления. Между тем в этом отношении ароматических соединений обнаруживают существенные отличия. Бромистый водород, обычно легко присоединяющийся в месте двойной (этиленовой) связи, к ароматическим соединениям не присоединяется. Присоединение брома - одна из самых употребительных реакций на двойную связь - осуществляется в отношении ароматических соединений только при наличии особых условий. Особенно характерна устойчивость ароматического «ядра» к окислителям. В то время как жирные и алициклические ненасыщенные углеводороды быстро реагируют с марганцевокислым калием с образованием кислот, бензол в тех же условиях почти не изменяется. Если же при ядре ароматического соединения находится боковая цепь, как, например, в этилбензоле (С 6 Н 5 ·СН 2 ·СН 3), то последняя окисляется в карбоксильную группу, и полученное в результате соединение (бензойная кислота С 6 Н 5 ·СООН) сохраняет основной углеродный скелет ароматического соединения - свое ядро. Даже при сильных химических воздействиях, например при сплавлении с щелочами, циклы исходных соединений остаются неизменными.

Для объяснения своеобразных свойств ароматических соединений был предложен целый ряд различных теорий. Первая формула строения бензола была дана немецким химиком Кекуле (в 1865 г.). В структурной формуле Кекуле - 6 расположенных в виде шестиугольника метиновых групп (= СН-), из которых каждая связана с соседними одной двойной (этиленовой) связью и одной простой (формула I). В виду того, что этиленовые связи характеризуются вполне определенными химическими свойствами, которых ароматические соединения лишены, эта формула нуждалась в некоторых дополнительных гипотезах.



Одной из них явилась гипотеза парциальных валентностей Тиле, по которой остаточные силы химического сродства атомов углерода взаимно насыщаются, образуя замкнутую систему, где три двойные связи находятся в «конъюгации» - взаимном сопряжении (формула II). С развитием учения о природе химических сил, гл. обр. в связи с теорией Вернера, представления о строении бензола подвергались некоторым видоизменениям. По Вернеру, силы химического сродства углерода не представляют собой отдельных, независимо друг от друга действующих сил (единицы сродства), но являются частичным выражением одной силы - общего запаса сродства, заложенного в атоме углерода. Т. о. значение каждой данной валентности заранее не определено, но зависит от состояния насыщенности углеродного атома, т. е. от количества сродства, потраченного на насыщение другими атомами или группами. При циклическом строении молекулы подобное насыщение может происходить не только за счет связывания других, не входящих в цикл, атомов, но иногда осуществляется внутренним распределением сродства между теми атомами, из которых данный цикл составлен. В бензоле этому способствует шестичленная симметричная структура, благодаря которой остаточное сродство каждого из шести атомов углерода приходит в состояние внутреннего насыщения, сообщающего циклу большую прочность и устойчивость. Подобные представления о строении бензола находят свое выражение в формуле III, где дугообразные связи иллюстрируют характер внутреннего циклического насыщения. В последнее время, в связи с учением о строении атома, были предложены новые электронные формулы строения бензола и других ароматических соединений, однако до сих пор они не получили широкого распространения в органической химии и являются только б. или м. удачной попыткой объяснения свойств ароматических соединений, как результата действия электростатических сил.

Главным источником получения ароматических соединений является каменноугольная смола - продукт сухой перегонки каменного угля. В результате ее обработки, состоящей из различных операций физического и химического характера, добываются разнообразные ароматические соединения, составляющие основу производства красителей, фармацевтических препаратов, взрывчатых, душистых и многих других веществ. Важнейшими ароматическими соединениями каменноугольной смолы являются бензол, толуол, ксилол, фенол, крезол, нафталин, фенантрен и антрацен, промышленная разработка которых в связи с планомерными научными исследованиями вызвала совершенно исключительный рост химической промышленности в конце прошлого и в начале нынешнего столетия.

gastroguru © 2017